Recuperado de :https://www.youtube.com/watch?v=r02yh5ic6Pc
HISTORIA DE LAS MATEMATICAS
martes, 17 de noviembre de 2015
domingo, 15 de noviembre de 2015
siglo xvii
Siglo xvii
Hay varios cambios en relación con las matemáticas antiguas que introdujeron los matemáticos occidentales del siglo XVII.
En primer lugar, deben subrayarse los diferentes papeles asignados al álgebra y la geometría. Se pasó de un dominio en métodos y criterios de rigor, de la validez, con base en la geometría, a una mayor relevancia del álgebra. Los resultados de las matemáticas dejaron de concebirse como simples idealizaciones de la experiencia y se empujó hacia una construcción más abstracta de conceptos y métodos. Al mismo tiempo, sin embargo, la creación del cálculo, que incluía métodos alejados de aquellos estándares de rigor y deducción propios de la geometría clásica, promovió la utilización de procesos inductivos en las matemáticas.
Sin duda los dos grandes en esta materia y época fueron René Descartes (1596-1650) y Pierrede Fermat (1601-1655).
La última parte de la famosa obra de Descartes "Discurso del Método" denominada "Géometrie", detalla en su comienzo, instrucciones geométricas para resolver ecuaciones cuadráticas, centrándose seguidamente en la aplicación del álgebra a ciertos problemas geométricos. Analiza también curvas de distintos órdenes, para terminar en el tercer y último libro que compone la obra, con la construcción de la teoría general de ecuaciones, llegando a la conclusión de que el número de raíces de una ecuación es igual al grado de la misma, aunque no pudo demostrarlo. Prácticamente la totalidad de la Géometrie está dedicada a la interrelación entre el álgebra y la geometría con ayuda del sistema de coordenadas.

De igual manera, se dio una estrecha vinculación entre las matemáticas y las ciencias naturales, lo que empujó hacia una mayor interdependencia y fusión teóricas que aumentaba la convergencia entre las ciencias y las matemáticas y evadiendo en parte sus distinciones.
Por otro lado, las matemáticas del siglo XVIII, a diferencia de las del siglo XVII, fueron esencialmente cuantitativas, debido precisamente a esa relación estrecha con las ciencias naturales. Esto configuraba lo que se puede describir como una situación contradictoria. Mientras que se tenía una gran producción matemática y un gran éxito en la capacidad para predecir en las ciencias, existía a la vez un conjunto considerable de debilidades en sus fundamentos lógicos. A pesar de la falta de claridad y precisión lógicas en el cálculo diferencial e integral y el uso poco cuidadoso de los números, esta disciplina encontró un extraordinario progreso.
Los números irracionales eran admitidos a principios del XIX, aunque no los negativos ni los complejos.
trigonométrica renacentista
Con relación a la trigonometría debe decirse que, aunque los peritos usaban los métodos geométricos romanos, se empezó a usar algo de trigonometría plana con un método iniciado por Leonardo de Pisa en su Practica Geometriae (1 220).
Otros avances fueron hechos por el mismo George Peurbach (1423 - 1461) de Viena, quien ofreció tablas trigonométricas más precisas y corrigió algunas traducciones latinas delAlmagesto que habían sido realizadas desde versiones árabes y no griegas.
El más conocido, sin embargo, fue Johannes Müller (1436 - 1476), el famoso Regiomontano, que fue discípulo de Peurbach y del cardenal Bessarion (c. 1400 - 1472). Regiomontano no solo haría varias traducciones de obras griegas sino que también estableció su propia imprenta para imprimirlas. Entre ellas las Secciones Cónicas de Apolonio y partes de Arquímedes y Herón. Se sabe que en su libro De Triangulis, 1462 - 1463, Regiomontano se benefició de algunos trabajos árabes para expresar de una mejor manera el conocimiento disponible sobre trigonometría plana, geometría esférica, y trigonometría esférica.
Un detalle sobre Müller: Nicolás de Cusa (1401 - 1464), quien se supone fue el primer europeo que buscó resolver el problema clásico de la cuadratura del círculo, y un intelectual, incluso cardenal, que tendría importantes repercusiones, fue corregido por Regiomontano (1436 - 1476), quien le señaló algunos problemas o errores de razonamiento.
La construcción de tablas fue otro asunto importante

tomado de www.centroedumatematica.com/aruiz/libros/.../Parte3/.../Parte06_11.htm
GEOMETRÍA RENACENTISTA
Quienes hicieron contribuciones a la geometría en el siglo XVI fueron, principalmente, Johannes Werner (1468-1522) y Albrecht Dürer (1471-1528) en Alemania y, en Italia, Leonardo da Vinci (1452-1519), Francesco Maurolico (1494-1575) y Pacioli. Así mismo contribuyeron los geógrafos, ya que la navegación está estrechamente relacionada con la representación geográfica y, con la empresa de Magallanes y Elcano, se dio una carta de autenticidad al concepto del Mapa Mundi representado como una esfera.Un hecho importante en que difiere el arte renacentista del arte de la edad media, es en el uso de la perspectiva en la representación plana de objetos tridimensionales. El arquitecto florentino Filippo Brunelleschi (1377-1446), atacó este problema, pero el primer intento formal de abordar algunos problemas de este tipo lo dio Leon Battista Alberti (1404-1472) en el tratado Della pictura de 1435.
Matemática en el renacimiento
Matemática en el renacimiento
Sin duda fue más difícil el ingreso en Europa de trabajos matemáticos que aquellas obras de literatura, filosofía o de ciencias naturales. Por ejemplo, la complejidad o dificultad de textos griegos como los de Euclides o Arquímedes hacía más difícil que se pudiera apreciar el valor de estas obras. Por eso, aun con traducciones de los clásicos ya realizadas, se requirió mucho mayor tiempo y otros trabajos adicionales para que esas obras pudieran ser apreciadas en su justa magnitud. En buena medida, los aspectos que más se tocaron fueron los más elementales de las matemáticas.
Las nuevas actitudes empujaron hacia una descripción cuantitativa del universo; sin embargo, esta etapa histórica y cultural no produjo grandes logros en las matemáticas. La importante, sin embargo, estaba en las condiciones sociales y culturales y más generales que servirían como un pivote y una plataforma importante para el progreso del conocimiento, las técnicas, las matemáticas.
Con Bell:
"El siglo XVI estuvo igualmente cuajado de grandes cosas para el futuro de la matemática. Los nombres de Leonardo de Vinci (1 452 - 1 519), Miguel Angel (1 475 - 1 564), y Rafael (1 483 - 1 520), tres de los mejores entre una pléyade, nos recordarán lo que esta época crítica, del siglo de Copérnico (1 473 - 1 543), fue en arte; paralelamente los de Torquemada (1 420 - 1 498), Lutero (1 483 - 1 546), Loyola (1 491 - 1 556) y Calvino (1 509 - 1 564) pueden sugerir lo que fue en los aspectos más elevados de la vida. Cardano (1 501 - 1 576) publicó (1 545) suArs magna, la suma de los conocimientos en álgebra de aquella época, solo dos años después de que Copérnico recibiera en su lecho de muerte las pruebas de imprenta de su revolucionario De revolutionibus orbium coelestium.'' [Bell, E.T.: Historia de las matemáticas, p. 121]
Con el influjo de las obras griegas, conocimiento y valores, se potenció el interés en las matemáticas. En el siglo XV, una de las principales influencias fueron las obras de Platón: el diseño matemático de la naturaleza, que incorporaba las características de armonía, verdad y belleza. La naturaleza es descrita entonces a través de leyes inmutables dentro de una comprensión que es racional y estructuradao
Tomado de www.centroedumatematica.com/aruiz/libros/.../Parte3/.../Parte02_11.htm
Matemática medieval Europa
El desarrollo de las matemáticas durante la edad media es frecuentemente motivada por la creencia en un «orden natural»; Boecio las sitúa dentro del currículo, en el siglo VI, al acuñar el término Quadrivium para el estudio metódico de la aritmética, la geometría, la astronomía y la música; en su De institutione arithmetica, una traducción de Nicómaco, entre otros trabajos que constituyeron la base de la matemática hasta que se recuperaron los trabajos matemáticos griegos y árabes
Suscribirse a:
Entradas (Atom)